7 research outputs found

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    A cross-lingual adaptation approach for rapid development of speech recognizers for learning disabled users

    Get PDF
    Building a voice-operated system for learning disabled users is a difficult task that requires a considerable amount of time and effort. Due to the wide spectrum of disabilities and their different related phonopathies, most approaches available are targeted to a specific pathology. This may improve their accuracy for some users, but makes them unsuitable for others. In this paper, we present a cross-lingual approach to adapt a general-purpose modular speech recognizer for learning disabled people. The main advantage of this approach is that it allows rapid and cost-effective development by taking the already built speech recognition engine and its modules, and utilizing existing resources for standard speech in different languages for the recognition of the users’ atypical voices. Although the recognizers built with the proposed technique obtain lower accuracy rates than those trained for specific pathologies, they can be used by a wide population and developed more rapidly, which makes it possible to design various types of speech-based applications accessible to learning disabled users.This research was supported by the project ‘Favoreciendo la vida autónoma de discapacitados intelectuales con problemas de comunicación oral mediante interfaces personalizados de reconocimiento automático del habla’, financed by the Centre of Initiatives for Development Cooperation (Centro de Iniciativas de Cooperación al Desarrollo, CICODE), University of Granada, Spain. This research was supported by the Student Grant Scheme 2014 (SGS) at the Technical University of Liberec
    corecore